Nghiên cứu ảnh hưởng của một số tham số hình dạng đến hệ số khí động học của Tên lửa phòng không tầm thấp

pdf 169 trang Phương Linh 25/03/2025 40
Bạn đang xem 30 trang mẫu của tài liệu "Nghiên cứu ảnh hưởng của một số tham số hình dạng đến hệ số khí động học của Tên lửa phòng không tầm thấp", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfToanVan LuanAn NCS TranPhuHoanh.pdf
  • docThongTin KetLuanMoi LuanAn NCS TranPhuHoanh.doc
  • docTrichYeu LuanAn NCS TranPhuHoanh.doc
  • pdfTomTat LuanAn NCS TranPhuHoanh_English.pdf
  • pdfTomTat LuanAn NCS TranPhuHoanh_TiengViet.pdf

Nội dung tài liệu: Nghiên cứu ảnh hưởng của một số tham số hình dạng đến hệ số khí động học của Tên lửa phòng không tầm thấp

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ QUỐC PHÒNG VIỆN KHOA HỌC VÀ CÔNG NGHỆ QUÂN SỰ TRẦN PHÚ HOÀNH NGHIÊN CỨU ẢNH HƢỞNG CỦA MỘT SỐ THAM SỐ HÌNH DẠNG ĐẾN HỆ SỐ KHÍ ĐỘNG HỌC CỦA TÊN LỬA PHÒNG KHÔNG TẦM THẤP Chuyên ngành: Cơ kỹ thuật Mã số: 9 52 01 01 TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT HÀ NỘI - 2021
  2. CÔNG TRÌNH ĐƢỢC HOÀN THÀNH TẠI VIỆN KHOA HỌC VÀ CÔNG NGHỆ QUÂN SỰ - BỘ QUỐC PHÒNG Người hướng dẫn khoa học: 1. PGS. TS Nguyễn Văn Chúc 2. TS Nguyễn Văn Sơn Phản biện 1: GS. TSKH Nguyễn Đức Cƣơng Phản biện 2: GS. TS Nguyễn Thế Mịch Phản biện 3: PGS. TS Đặng Ngọc Thanh Luận án được bảo vệ tại Hội đồng đánh giá luận án cấp Viện và họ p tại Viện Khoa học và Công nghệ quân sự vào hồi giờ phút, ngày tháng năm 2021. Có thể tìm hiểu luận án tại: - Thư viện Viện Khoa học và Công nghệ quân sự; - Thư viện Quốc gia Việt Nam.
  3. 1 MỞ ĐẦU Tính cấp thiết của đề tài: Tên lửa tự dẫn hồng ngoại đất đối không tầm thấp I đang được quan tâm hiện nay không chỉ ở nước ta mà ở rất nhiều nước trên thế giới. Đây là loại tên lửa có điều khiển có tính hiệu quả cao trong tác chiến, được trang bị cho cá nhân hoặc tổ hợp trên xe cơ giới. Chúng được nghiên cứu chế tạo phù hợp và hiệu quả trong chiến tranh hiện đại nhằm tiêu diệt các mục tiêu trên không tầm thấp như: tên lửa hành trình, máy bay tốc độ thấp, trực thăng vũ trang và trực thăng đổ bộ Cùng họ với tên lửa I có tên lửa A72, A87 đã được trang bị trong quân đội ta, đặc biệt tên lửa A72 đã phát huy được tính hiệu quả của nó tại chiến trường Miền Nam. Chủ trương của quân đội ta hiện nay là từng bước ứng dụng khoa học kỹ thuật, cải tiến hiện đại hoá các trang bị quân sự, trong đó đặc biệt quan tâm đến các loại tên lửa tự dẫn hồng ngoại điều khiển một kênh thuộc tổ hợp tên lửa phòng không tầm thấp. Những năm qua Tổng cục Công nghiệp quốc Phòng đã và đang tiếp thu chuyển giao công nghệ chế tạo tên lửa tự dẫn hồng ngoại I từ nước ngoài, tuy nhiên tài liệu tính toán thiết kế không được chuyển giao. Điều đó gây khó khăn trong việc cải tiến, hiện đại hóa cũng như làm chủ công nghệ chế tạo họ tên lửa này bằng công nghệ trong nước. Do vậy việc nghiên cứu sâu bản chất vật lý, cơ sở lý thuyết, tính toán xác định các tham số, làm sáng tỏ các vấn đề công nghệ đang được chuyển giao là vấn đề có tính khoa học và thực tiễn cao. Mục đích của luận án: Xây dựng cơ sở lý thuyết, xác định tham số thiết kế phối trí khí động, đặc biệt quan tâm tới giải pháp giảm lực cản chính diện đảm bảo tính gọn nhẹ, đồng thời đảm bảo chức năng tự dẫn của lớp tên lửa này. Để đạt mục tiêu trên, luận án xây dựng phương pháp để xác định các hệ số đặc trưng khí động học của tên lửa phòng không tầm thấp (TLPKTT) nói chung và TLPKTT kiểu I nói riêng, trên cơ sở kết hợp các phương pháp để nâng cao độ tin cậy kết quả tính toán. Đánh giá được ảnh hưởng của các tham số hình dạng đến các hệ số khí động học của TLPKTT kiểu I, qua đó đưa ra các đề xuất các giải pháp nâng cấp, cải tiến tên lửa dựa trên sự thay đổi về thiết kế và biên dạng của đạn. Nội dung nghiên cứu: Từ kết quả nghiên cứu tổng quan, luận án phân tích, lựa chọn mô hình nghiên cứu. Xây dựng mô hình toán phù
  4. 2 hợp (đối tượng TLPKTT điều khiển một kênh, có tính tới yếu tố ảnh hưởng của hiện tượng đan kênh) kết hợp ứng dụng các phương pháp mô phỏng khí động học (phương pháp tính toán lý thuyết), phương pháp xử lý số liệu kết quả bắn thực nghiệm (phương pháp thực nghiệm) và trình bày cơ sở lý thuyết phương pháp hiệu chỉnh số liệu kết quả nhận được. Trên cơ sở các phương pháp xác định hệ số khí động được xây dựng. NCS tiến hành đánh giá một số tham số hình dạng để thấy được sự ảnh hưởng của chúng lên hai hệ số khí động học cơ bản là hệ số lực cản Cx, hệ số mô men xoắn mx. Đối tượng và phạm vi nghiên cứu: Các vấn đề nghiên cứu, giải quyết của luận án chủ yếu tập trung vào khí động học bay của TLPKTT điều khiển theo một kênh. Phạm vi nghiên cứu của luận án là khảo sát đánh giá sự ảnh hưởng của các tham số hình dạng đến các đặc trưng khí động học của lớp tên lửa một kênh kiểu I, khi bay ở tốc độ trên âm và điều kiện đảm bảo tốc độ góc quay xung quanh trục dọc của tên lửa được duy trì ổn định. Phương pháp nghiên cứu: Kết hợp phương pháp nghiên cứu tính toán lý thuyết với nghiên cứu thực nghiệm. Ý nghĩa khoa học của luận án: Các vấn đề nghiên cứu, giải quyết của luận án là các vấn đề khoa học đang rất được quan tâm và đã được các cường quốc về kỹ thuật quân sự trên thế giới nghiên cứu, thử nghiệm đưa vào ứng dụng, song cơ sở lý thuyết cũng như các kết quả nghiên cứu về các vấn đề này không được công bố. Vì vậy đối với chúng ta đây là vấn đề mới và thực sự có ý nghĩa khoa học. Ý nghĩa thực tiễn của luận án: Kết quả nghiên cứu của đề tài luận án sẽ làm sáng tỏ hơn về cơ sở khoa học và giải đáp vấn đề tại sao trên TLPKTT kiểu I, chóp khí động lại có hình dạng kiểu thanh với các ren xoắn và có chiều dài, đường kính như vậy cũng như vấn đề phối trí khí động các cánh đuôi, cánh lái, cánh phá ổn định trên tên lửa. Luận án gồm phần mở đầu, kết luận, 4 chương được trình bày trong 136 trang và phần phụ lục.
  5. 3 CHƢƠNG 1. TỔNG QUAN VỀ ĐẶC ĐIỂM PHỐI TRÍ, KHÍ ĐỘNG LỚP TÊN LỬA PHÕNG KHÔNG TẦM THẤP KIỂU I 1.1. Tổng quan về tên lửa phòng không tầm thấp kiểu I Cho đến nay TLPKTT đã có lịch sử phát triển lâu dài 50 năm, qua ba thế hệ với trên 30 chủng loại khác nhau. Những cuộc chiến tranh, xung đột trước kia như chiến tranh Việt Nam (giai đoạn 1965-1975), Afghanistan (1982-1989), hay cuộc chiến trong những thập kỷ gần đây tại Irắc (2003-2011), cuộc nội chiến tại Syria (từ năm 2011 – nay), đã chứng tỏ các phương tiện tiến công đường không tầm thấp chủ yếu là các máy bay cường kích chiến trường, các máy bay trực thăng. Hiện nay, quá trình phát triển của TLPKTT đã trải qua bốn thế hệ, với nhiều sự cải tiến về tính năng tác chiến. Điển hình nhất là thế hệ thứ 4 đang được nghiên cứu chế tạo theo hướng tiên tiến và thông minh hóa hơn, đồng thời nâng các tính năng kỹ-chiến thuật khác như: tầm bắn hiệu quả, độ cao bắn hiệu quả, tăng uy lực phần chiến đấu để tăng xác suất sát thương mục tiêu, Điển hình cho thế hệ 4 là loại “Stinger RMPII” (Mỹ), “I-S”, “I-N”, “I-D” (Nga). Hình ảnh tổng thể TLPKTT kiểu I: Hình 1.1. Tên lửa phòng0020không tầm thấp kiểu I. Tên lửa cấu tạo từ các khoang liên kết với nhau như sau: đầu tự dẫn 1, khoang máy lái 2, bộ phận chiến đấu 3 (cùng với ngòi nổ), động cơ hành trình 4, động cơ phóng 5 và khối cánh lái 6. 1.2. Đặc điểm khí động TLPKTT nói chung và TLPKTT kiểu I nói riêng Phần lớn lớp TLPKTT được thiết kế trên nguyên tắc cơ bản là mô
  6. 4 hình khí động “con vịt”. Dựa trên đó, thiết kế các vị trí đặt đầu tự dẫn, khoang lái, phần chiến đấu và thiết bị động cơ với bộ phận cánh, phần đuôi. Với sơ đồ này, một mặt việc thiết kế liên kết giữa các khối cụm điện tử được đơn giản hóa, mặt khác tăng tối đa khả năng cơ động cho quả đạn. Nhưng bên cạnh đó, sơ đồ khí động này cũng có những điểm hạn chế nhất định, như: gây ra hiện tượng dòng xoáy từ cánh lái ảnh hưởng lên phần thân, đuôi cánh. Khi dòng thổi đến không đối xứng sẽ làm xuất hiện mô men cren phụ. Mô men này phụ thuộc nhiều vào góc tấn, vận tốc dòng tới (đặc trưng bởi số Mach) và góc lệch cánh tên lửa. 1.3. Vấn đề xác định các hệ số khí động học của lớp TLPKTT nói chung và Tên lửa TLPKTT kiểu I nói riêng Tổng quan tình hình nghiên cứu trên thế giới và trong nước Hướng nghiên cứu về xác định các đặc trưng khí động đã được thực hiện và áp dụng đối với một số loại TLPKTT nói chung và TLPKTT kiểu I nói riêng có thể được tóm tắt thực hiện theo một số hướng nghiên cứu cơ bản sau đây: - Phương pháp giải tích - Phương pháp sử dụng ống khí động - Phương pháp xác định hệ số đặc trưng khí động bằng phương pháp xử lý kết quả bắn thực nghiệm - Phương pháp sử dụng các phần mềm mô phỏng khí động học - Phương pháp xoáy rời rạc 1.4. Kết luận chƣơng 1 Chương 1 của luận án đã trình bày các vấn đề chung về TLPKTT, làm rõ các đặc điểm riêng về hình dạng, phối trí khí động, phương pháp điều khiển của lớp TLPKTT. Tổng quan tình hình nghiên cứu trong và ngoài nước về lĩnh vực nghiên cứu, thực nghiệm xác định các hệ số khí động, mối quan hệ ảnh hưởng giữa hình dạng khí động và đặc tính khí động của thiết bị bay nói chung và lớp TLPKTT nói riêng. Từ đó giới hạn, đặt bài toán cần phải giải quyết của luận án:
  7. 5 - Nghiên cứu đặc tính khí động của TLPKTT kiểu I; - Xây dựng hai phương án xác định bộ hệ số khí động của TLPKTT kiểu I là: + Phương án tính toán lý thuyết: Xây dựng được một mô hình toán phù hợp với đối tượng nghiên cứu là TLPKTT, đối tượng có đặc điểm là điều khiển một kênh, chuyển động quay quanh trục dọc (có tính đến ảnh hưởng đan kênh); NCS lựa chọn phương án sử dụng phần mềm mô phỏng khí động học ANSYS.CFX để hỗ trợ trong quá trình ứng dụng mô hình toán này để xác định bộ hệ số khí động của TLPKTT. + Phương án thực nghiệm: Sử dụng kết quả đo đạc quỹ đạo bắn thử nghiệm TLPKTT kiểu I, xây dựng phương án xử lý số liệu kết quả bắn thực nghiệm; + So sánh kết quả hai phương pháp. - Đánh giá ảnh hưởng các tham số hình dạng của thanh khí động (góc côn, bước ren, đường kính và chiều dài thanh khí động) đến hệ số lực cản Cx; - Đánh giá ảnh hưởng các tham số hình dạng và phối trí khí động các cánh của tên lửa (cánh ổn định, cánh lái, cánh phá ổn định) đến hệ số mô men ổn định tốc độ quay của tên lửa xung quay trục dọc mx; - Đề xuất giải pháp tối ưu hình dạng thanh khí động, phối trí khí động thân-cánh, cải thiện chất lượng khí động cho TLPKTT kiểu I. CHƢƠNG 2. MÔ HÌNH KHÍ ĐỘNG TÍNH TOÁN LỰC VÀ MÔ MEN CỦA TÊN LỬA CÓ TÍNH ĐỐI XỨNG Hiện nay các mô hình toán để xác định các hệ số đặc trưng khí động là các mô hình toán chung cho các thiết bị bay. Đặc điểm đối tượng nghiên cứu của luận án là TLPKTT điều khiển một kênh, đây là loại tên lửa đặc thù có sự đan kênh. Các yếu tố ảnh hưởng lẫn nhau. Như đã trình bày ở chương 1 về đặc điểm khí động học của lớp tên lửa này ta đã thấy một bức tranh khí động rất phức tạp, ví dụ sự thay đổi về góc tấn có thể gây nên sự thay đổi về lực cản chính diện, lực trượt cạnh hay là các mô men theo các trục khác. Ngoài ra, đối
  8. 6 tượng tên lửa này hoạt động ở vùng vận tốc trên âm với đặc điểm có chuyển động quay quanh trục dọc của quả đạn nên về cơ bản một mô hình toán chung cho các thiết bị bay thông thường là không lột tả hết được đặc điểm đan kênh cũng như những tính chất phức tạp của chuyển động của loại thiết bị bay điều khiển một kênh này. Do đó, phần lớn nội dung của chương 2 sẽ đi xây dựng mô hình toán cho riêng đối tượng TLPKTT. 2.1. Cơ sở lý thuyết phƣơng pháp xác định hệ số khí động của lớp tên lửa quay quanh trục dọc Việc xây dựng đúng mô hình toán có ý nghĩa rất quan trọng trong quá trình xác định các hệ số khí động của thiết bị bay nói chung. Các mô hình toán thường là các hàm nhiều biến. Đối với đặc điểm của lớp TLPKTT, do có tính quay - nên có ảnh hưởng mạnh mẽ giữa các kênh chuyển động lẫn nhau. Ta gọi đó là hiện tượng “đan kênh”. Lấy ví dụ, thay đổi góc tấn sẽ dẫn đến sự thay đổi không chỉ lực nâng, lực cản chính diện mà còn cả lực trượt cạnh, hoặc trường hợp ngược lại xảy ra khi thay đổi góc trượt cạnh cũng sẽ thay đổi các đặc trưng khí động ở kênh khác. Do đó, cần có một mô hình toán xây dựng phù hợp hơn với lớp tên lửa có tính quay và điều khiển một kênh kiểu TLPKTT. Để giải quyết bài toán này, chúng ta đưa vào các biến là góc tấn tổng và góc kren khí động . Đây là các góc được xác định theo vị trí tương đối vecto vận tốc tức thời với hệ tọa độ liên kết của tên lửa. Góc tấn tổng là góc giữa vecto vận tốc và trục dọc Ox của tên lửa, góc là góc giữa vecto vận tốc và hình chiếu của vecto vận tốc lên mặt phẳng đối xứng của tên lửa (hình 2.1). Hình 2.1. Hệ trục tọa độ liên kết Oxyz và hệ trục tọa độ trụ 0xζη. Ngoài ra còn đưa thêm vào các đại lượng góc lệch cánh
  9. 7 xác định đặc trưng hình dạng tức thời của phần thân cứng của tên lửa, ta cũng có thể gọi chúng là “cấu hình- ”. Các hàm này được xác định dựa trên các kết quả thổi mô hình trong ống khí động. (Như đã trình bày ở trên trong điều kiện ở nước ta hiện nay, việc sử dụng ống khí động cho các thiết bị bay có tốc độ cao là không thể. Nên ta sử dụng phần mềm mô phỏng khí động học bằng phần mềm ANSYS để thay thế cho phương án sử dụng ống khí động). Chúng ta nhận thấy rằng, các tham số có thể chuyển đổi sang các khái niệm về góc tấn và góc trượt cạnh thông thường thông qua công thức quy đổi sau: ; ; ; Như vậy, được hiểu là góc tấn tổng; là góc kren khí động. Tương tự như vậy các vecto vận tốc góc , , trong hệ tọa độ liên kết cũng được phân tích theo các biến cực ( ) của hệ tọa độ cực ( ): , ; Có hai bước để xác định hàm phụ thuộc các hệ số khí động với các tham số là: - bước thứ nhất: xác định sự phụ thuộc riêng vào các tham số α,φ; - bước thứ hai: xác định sự phụ thuộc vào tham số ̂ . 2.1.1. Chuyển từ hệ tọa độ liên kết sang hệ trục tọa độ trụ Các trục 0ζ và trục 0η được định hướng tương ứng với mặt phẳng góc tấn và mặt vuông góc với mặt phẳng góc tấn Các hệ số là như nhau ở hai hệ trục tọa độ, còn các hệ số đặc trưng khí động còn lại được quy đổi như sau: ⟩ (2.8) Trong trường hợp ta đang xét thì các hệ số là hàm riêng của các tham số và . Ta gọi hàm đó là . Với mỗi giá trị cố định góc tấn tổng , hàm là hàm đơn trị có tính chất chu kỳ theo góc . Khi đó hàm này có thể triển khai dưới dạng: ∑ , k=0,1,2, ; (2.9) Trường hợp tổng quát, tên lửa có cấu hình đối xứng trục theo bậc
  10. 8 n. Khi đó ta có: ( ); (2.11) Từ công thức (2.11) ta thấy rằng, công thức (2.8) là trường hợp riêng khi k/n là số nguyên, còn các thành phần còn lại bằng 0. Triển khai công thức (2.9) và nhận được ̅ |( ) = ∑ , k = 0,1, ; (2.12) |( ) = ∑ , k = 0,1, ̅; Chuyển hệ trục tọa độ trụ 0xζη về hệ trục tọa độ liên kết Oxyz. Từ công thức (2.8) ta có ∑ ; [∑ ] [∑ ̃ ] [∑ ] [∑ ̃ ] ∑ ; (2.14) [∑ ̃ ] [∑ ] [∑ ] [∑ ̃ ] k = 0,1, ̅; Công thức (2.14) đúng với tất cả các dạng “cấu hình-δ” nếu như góc φ được tính từ mặt phẳng đối xứng gương.
  11. 9 2.1.2. Các hệ số đặc trƣng khí động chịu sự ảnh hƣởng của các góc lệch cánh lái Ta viết chúng dưới dạng công thức chung là hàm . Cấu trúc lực – mô men ở trường hợp này có thể chịu nguyên tắc cơ bản về tính bất đối xứng. Giả sử các góc lệch cánh lái tạo nên cấu hình - , , . Khi đó: (2.16) 2.1.3. Tính hệ số khí động cho TLPKTT kiểu I Đối với TLPKTT kiểu I có dạng đối xứng gương và đối xứng trục với đặc điểm: cụm cánh phía trước có hai cánh phá ổn định lật ngược chiều nhau, ở dạng đối xứng trục với góc quay đối xứng là π (cánh lái quay cùng chiều nên mô men với hai cánh này triệt tiêu, có thể bỏ qua), trên thực tế, góc lật của hai cánh phá ổn định là ; cụm cánh phía sau có 4 cánh lật đồng thời và cùng chiều, dạng đối xứng trục với góc quay đối xứng π/2, góc lật cánh là . Để giải cho trường hợp tổng quát, ta giả sử các góc lật cánh là biến đổi. Khi đó ta có các biến số là vận tốc V, góc tấn tổng và các góc lật cánh và . Khai triển chuỗi Furier công thức (2.14) ta có các công thức tính gần đúng đối các đặc trưng khí động của TLPKTT kiểu I như sau: Hệ số lực cản chính diện: ( ) √ (2.22)
  12. 10 Mô men xoắn : ̅ ̅̅ ̅ ( √ √ ) ( ) √ ( ) (2.29) Để để xác định các hệ số của phương trình 2.29, ta sử dụng phần mềm mô phỏng khí động ANSYS.CFX, xác định các giá trị cụ thể của tại các điểm cụ thể (V, ). với mỗi điểm cụ thể ta tìm được các hệ số , , , , , , , của các phương trình (2.22) và (2.29) cho đối tượng TLPKTT. 2.3. Phƣơng pháp sử dụng phần mềm mô phỏng khí động học ANSYS.CFX 2.3.1. Cơ sở lý thuyết Cơ sở toán học của quá trình mô phỏng này là giải phương trình Navier-Stock cho dòng chảy không nén được của các chất lưu có tính Newton. Phương trình Navier-Stokes, miêu tả dòng chảy của các chất lỏng và khí (gọi chung là chất lưu). Những phương trình này thiết lập trên cơ sở biến thiên động lượng trong những thể tích vô cùng nhỏ của chất lưu đơn thuần chỉ là tổng của các lực nhớt tiêu tán (tương tự như ma sát), biến đổi áp suất, trọng lực, và các lực khác tác động lên chất lưu - một ứng dụng của định luật 2 của Newton. Phương trình Navier-Stokes được xây dựng từ sự bảo toàn của khối lượng, động lượng, và năng lượng được viết cho một thể tích đang xem xét bất kì. Dạng tổng quát nhất của hệ phương trình Navier-Stokes là: ρ ( + v.∇v) = −∇p + ∇⋅T + f
  13. 11 2.3.2. Xây dựng mô hình toán + Vận tốc: Mô phỏng với giải vận tốc từ 200 đến 700 [m/s]; + Hệ trục tọa độ liên kết OX1Y1Z1 có gốc O tại mũi tên lửa; + Vị trí tâm áp được tính từ mũi tên lửa; Đặc tính lưới được thiết lập như sau: - Hàm kích thước được lựa chọn là Proximity and Curvature và tham số Relevance Center là Fine để đảm bảo độ mịn của lưới, ngoài ra còn phù hợp cho việc mô phỏng đặc tính của dòng trên âm; - Thiết lập kích thước mắt lưới nhỏ nhất là 0.1mm; - Thiết lâp kích thước mắt lưới lớn nhất là 10 mm; - Thuộc tính Inflation chia 5 lớp với tỷ lệ tăng của lớp là 1.2, trong đó lớp sát trong cùng độ dày 1mm; - Đặc tính lưới tính toán là chuyển đổi về dạng lưới hình hộp bằng phương pháp chia quy đổi: Hex Dominant Method; 2.3.2. Ứng dụng kết quả mô phỏng ANSYS, xác định các hệ số lực cản và mô men xoắn đối với dòng TLPKTT kiểu I Với và là các góc lật cánh đã biết. Giả sử với đối tượng tính 0 toán là TLPKTT kiểu I thì ta có: , 0.667 . Khi đó ( ) là một giá trị hằng số nào đó, nên ta có thể quy gộp với thành thành phần hằng số không chứa biến của . Do đó: công thức 2.22 trên được rút gọn về thành: √ ; (2.32) Công thức 2.29 được rút gọn về thành: ̅̅̅̅ ̅̅̅ ̅ [ ] ( ) ( ) ̅̅̅̅̅; (2.33)
  14. 12 Sử dụng phần mềm mô phỏng khí động ANSYS.CFX, xác định các giá trị cụ thể của tại các điểm cụ thể (V, ). Phương trình 2.32 có tất cả 9 ẩn số là các hệ số , , . Mô phỏng 9 điểm cụ thể (V, ), kết quả nhận được là điều kiện đầu vào để giải hệ phương trình bậc nhất 9 ẩn. Kết quả đạt được như sau: Bảng 2.1. Hệ số , , V (M) Cx0 2.028986 0.754746453 0.00534 0.007623 1.884058 0.78535579 0.024203 -0.00467 1.73913 0.815965128 0.043066 -0.01697 1.594203 0.856552247 0.068002 -0.03354 1.449275 0.897139365 0.092938 -0.05012 1.304348 0.901238123 0.108359 -0.06115 1.15942 0.955451775 0.123779 -0.07217 1.014493 0.854733944 0.052667 -0.02971 0.869565 0.754016113 0.004082 0.00604 0.724638 0.653298282 -0.05577 0.045148 0.57971 0.552580451 -0.11562 0.084255 Với cách tính toán tương tự ta có được kết quả các hệ số của phương trình (2.29), tính mô men Mx cho đối tượng TLPKTT kiểu I: ̅̅̅̅̅ V (m/s) ̅̅̅ ̅ 0.579 -0.2717 -0.003136 0.00021 -0.000062 0.000043 0.7246 -0.2855 -0.002472 0.000165 -0.000048 0.000034 0.8695 -0.2715 -0.001807 0.00012 -0.000034 0.000024 1.0144 -0.2689 -0.001748 0.000121 -0.00003 0.000025 1.159 -0.1510 -0.000478 0.000031 0 0 1.3043 0.02783 -0.001613 0.000106 -0.000031 0 1.4492 0.09896 -0.002749 0.00018 -0.000055 0.000036 1.5942 0.23922 -0.00209 0.000136 -0.00004 0.000026 1.739 0.39199 -0.001432 0.000091 -0.000026 0 1.8840 0.52791 0.000775 -0.000056 0.000023 0 2.0289 0.65152 0.002982 -0.000203 0.000071 -0.000046
  15. 13 2.4. Kết luận chƣơng 2 1. Chương II đã xây dựng được mô hình toán dùng cho đối tượng TLPKTT điều khiển một kênh có tính quay. Chuyển đổi các khái niệm góc tấn, góc trượt cạnh thông thường về bài toán tọa độ cực ( ). 2. Xây dựng được công thức tổng quát xác định các hệ số cho đối tượng TLPKTT nói chung và tính riêng cho TLPKTT kiểu I. Đây là một kết quả nghiên cứu mới, ứng dụng cho việc khảo sát các đặc trưng khí động của tên lửa một kênh, có hiện tượng “đan kênh”. 3. Đã xây dựng được phương án mô phỏng sử dụng phần mềm ANSYS.CFX để xác định các đặc trưng khí động ở các điều kiện xác định về đặc trưng của dòng chảy bao (vận tốc dòng, nhiệt độ, các góc tạo thành với trục dọc TBB). Ứng dụng các kết quả mô phỏng cho đối tượng TLPKTT kiểu I để xác định hệ số của phương trình tính cho tên lửa này. CHƢƠNG 3. PHƢƠNG PHÁP XÁC ĐỊNH CÁC HỆ SỐ KHÍ ĐỘNG TLPKTT BẰNG XỬ LÝ SỐ LIỆU BẮN THỰC NGHIỆM VÀ THUẬT TOÁN HIỆU CHỈNH SỐ LIỆU 3.1. Cơ sở lý thuyết phƣơng pháp xác định hệ số khí động TLPKTT kiểu I bằng xử lý kết quả đo đạc bắn thực nghiệm 3.1.1. Nguyên lý cơ bản Với một vật thể có hình dạng, kích thước và đặc tính khối lượng xác định, trong một điều kiện khí tượng nhất quán thì khi phóng ra với một vận tốc ban đầu và góc phóng đã được xác định (giả thiết bài toán bắn không có mục tiêu hoặc mục tiêu có quỹ đạo cố định) thì các đặc tính quỹ đạo bay của nó là hoàn toàn xác định và là duy nhất. Từ đó suy ra nếu đo được các tham số quỹ đạo thì ta có thể tính toán ngược lại để xác định được các tham số khí động tương ứng. Bài toán này gọi là bài toán ngược hay bài toán nhận dạng các tham số khí động của vật thể bay trong không gian.
  16. 14 3.1.2. Mô hình toán và xây dựng phần mềm tính toán các tham số khí động qua các số liệu thử nghiệm Mục đích của quá trình phân tích, xử lý dữ liệu từ thử nghiệm đo tham số quỹ đạo là xác định được các lực và mô men khí động tác dụng lên tên lửa mô hình trong khi bay trên quỹ đạo. Các lực và mô men khí động của tên lửa: XYZMMMa,,,,, a a x y z và các hệ số khí động thành phần của nó có thể được cho dưới dạng (3.1) - (3.6): V 2 XCAAAS 22   (3.1) ax 0 1 2 3 2 V 2 YCCCS   (3.2) a y0 y y 2 V 2 ZCCS  H  (3.3) a z z H 2  HE Mx [ m x m x  H m x  E 22 mmxx (3.4) + . .  . .  B       V 2 B . . .Sb . 2 2 a  mx x y + . . H mm x .  x x .  y  . H  H x My [ m y m y  H m y  x (3.5) 2  V my . m .  mH .  ]. Sb y y y y H2 a V 2 M m m m   mz  m m   Sb (3.6) z z0 z z z z z z2 a Các lực và mô men khí động này cùng với các dữ liệu, điều kiện ban đầu về trạng thái của tên lửa mô hình là thông tin quan trọng, đầu vào cho việc xác định các hệ số khí động.
  17. 15 3.1.3. Trình tự tính toán Số liệu vào t 0, ,  ,  , x 0, y 0, z 0, V 0 0 0 0 0 0 0 0 0 a[ i ], a [ i ], a [ i ], [ i ],  [ i ],  [ i ], t xm y m z m x m y m z m Tính các góc i,,  i   i Tính các giá trị gia tốc a[ i ], a [ i ], a [ i ] trong x1 y 1 z 1 hệ tọa độ liên kết Ox1y1z1 Tính quỹ đạo, vận tốc, gia tốc trong hệ tọa độ mặt đất Ox0y0z0. xiyiziviviviViaiaiai[], [], [], [], [], [], [], [], [], [] 0 0 0x0 y 0 z 0 0 x 0 y 0 z 0 Xác định các góc định hướng của véctơ vận tốc Vi0[] [i ] arcsin( v [ i ] V [ i ]) , y0 0  [i ] arccos v [ i ] V [ i ] cos [ i ] x0 0 Giải hệ 3 phương trình siêu việt (3.19) – (3.21), tính các góc []i , []i và  a[]i Lựa chọn các thời điểm tính toán t[ i ], i 1 n Tính XiYiZiMiMiMia[], a [], a [], x [], y [], z [] Tính các hệ số khí động z  CAAAx0,,, 1 2 3 , mz0 , m z , m z , m z , m z , m z
  18. 16 3.2. Ứng dụng xác định một số tham số khí động cho TLPKTT kiểu I Qua kết quả mô phỏng nhận được trên Matlab Simulink ta có thể rút ra các nhận xét sau: - Về cơ bản, mô hình mô phỏng động lực học vòng điều khiển tên lửa một kênh được xây dựng đã mô tả được đúng các tính chất động học và động lực học của quả tên lửa. - Khi tiến hành so sánh kết quả mô phỏng giữa việc sử dụng các tham số khí động được tính toán sơ bộ với số liệu tham số khí động được nhận dạng, ta nhận thấy kết quả có sự khác nhau, thể hiện ở sai số điểm gặp mục tiêu thời điểm cuối. Nguyên nhân là do mô hình toán mà nội dung đưa ra chưa mô tả hết được các đặc trưng liên kết của các số liệu ở giai đoạn tính toán sơ bộ, hay nói cách khác, quá trình tính toán nhận dạng tham số khí động như ở mục 3.3.2 vẫn có sai số, và được thể hiện trong bảng dưới đây: Bảng 3.6. Đánh giá kết quả nhận dạng một số tham số khí động của tên lửa: Cfx ,,   Cfy ,,   Cfz ,,   BestFit BestFit BestFit MSE MSE MSE V (%) (%) (%) [m/s] 200 3.704e-05 94.5587 0.0041 96.4030 0.004 96.2717 350 1.1474e-04 91.5397 0.0085 96.0811 0.0376 93.9968 400 9.3081e-05 91.4584 0.003 97.1134 0.0051 96.0887 500 9.0289e-05 91.4207 0.0027 96.9708 0.0045 96.059 600 1.1692e-04 90.3934 0.0028 96.4407 0.0041 95.9436 700 1.7983e-04 89.5893 0.0025 96.2646 0.0038 95.8480
  19. 17 3.4. Kết luận chƣơng 3 1. Trong chương 3, luận văn đã tiến hành thiết lập công cụ tính toán mô phỏng ANSYS CFX để tính các lực và mô men khí động của mô hình quả đạn tên lửa một kênh kiểu Igla. Các kết quả sau khi trích xuất từ phần mềm CFX đã được xử lý sơ bộ và tính toán ra các tham số khí động thành phần nhờ phương pháp nhận dạng hồi quy liên tiếp. Các tham số khí động sau tính toán, nhận dạng được đưa vào mô hình toán học chuyển động của tên lửa để tiến hành mô phỏng động lực học vòng điều khiển tên lửa. Các kết quả mô phỏng trên Matlab Simulink cho thấy các tham số khí động tính toán về cơ bản đã thể hiện được các đặc trưng khí động học của tên lửa. 2. Đồng thời, dựa vào các hệ số khí động đã tính toán, nội dung chương cũng đã tiến hành kiểm tra lại quy trình tính toán, xử lý dữ liệu thực nghiệm đã trình bày ở trên. Qua đó đã chỉ ra được tính khả thi và các vấn đề gặp phải khi tính toán và phương pháp giải quyết.
  20. 18 CHƢƠNG 4. NGHIÊN CỨU ẢNH HƢỞNG CỦA MỘT SỐ THAM SỐ HÌNH DẠNG TỚI BỘ HỆ SỐ KHÍ ĐỘNG CỦA TLPKTT KIỂU I Nội dung chính của chương này, NCS nghiên cứu ảnh hưởng của một số tham số hình dạng đến bộ hệ số đặc trưng khí động của TLPKTT kiểu I. Đánh giá tập trung vào hệ số cản chính diện và hệ số mô men xoắn . 4.1. Một số tham số hình dạng ảnh hƣởng đến hệ số lực cản Kết quả mô phỏng định tính tại một trường hợp như sau: a) b) c) d) Hình 4.10. Phân bố nhiệt độ với các trường hợp TKĐ có độ dài khác nhau a) TKĐ dài 166 (mm); b) TKĐ dài 91 (mm); c) TKĐ dài 40 (mm); d) TKĐ dài 36 (mm). Trường hợp TKĐ kéo dài 166 mm (trường hợp hình 4.10.a), xảy ra hiện tượng sóng xung kích bị kẽo giãn. Vị trí đầu tự dẫn nằm ngoài ảnh hưởng của chóp khí động, khi độ dài của TKĐ được thu
  21. 19 ngắn lại thì vùng bị kéo giãn giảm dần. Trường hợp 4.10.b cho thấy đầu tự dẫn bắt đầu nằm trong vùng ảnh hưởng của sóng giãn hình thành từ chóp TKĐ. Hiện tượng này phù hợp với các kết quả thổi thực nghiệm mô hình quả đạn có gắn TKĐ với các độ dài khác nhau bằng ống khí động: Hình 4.11. Bức tranh dòng chảy bao quanh TKĐ với các độ dài khác nhau: a) Sóng xung kích bị kéo giãn; b) Sóng xung kích không bị kéo dãn. Trường hợp TKĐ dài 40 (mm) (hình 4.10.b), đầu tự dẫn vẫn nằm trong khu vực sóng giãn, nhưng khi TKĐ rút ngắn xuống còn 36 (mm) < thì bắt đầu xảy ra quá trình sóng xung kích xiên chạy thẳng vào đầu tự dẫn (hình 4.10.d). Kết quả mô phỏng định lượng xác định hệ số đặc trưng lực cản chính diện với các thanh khí động có độ dài khác nhau: Hình 4.12. Đồ thị phụ thuộc hệ số đặc trưng lực cản chính diện Cx.
  22. 20 Kết quả từ hình 4.12 cho thấy sự thay đổi độ dài của TKĐ có ảnh hưởng rõ rệt tới hệ số đặc trưng Cx. Đặc biệt là khi độ dài V2 101 (mm) thì Cx tăng từ 10% đến 23%. Quá trình tăng này không mạnh mẽ như trường hợp thu ngắn độ dài của TKĐ. Như vậy ta có thể kết luận là tham số độ dài của TKĐ có ảnh hưởng lớn tới hệ số đặc trưng Cx trong các trường hợp: V2 101 (mm). Chúng gây tăng sức cản chính diện, vì vậy độ dài phù hợp đối với đối tượng TLPKTT kiểu I là V2 nằm trong khoảng từ 56÷96 (mm). Khi đó Cx đạt giá trị nhỏ nhất. 4.2. Các tham số hình dạng ảnh hƣởng đến hệ số mô men xoắn Hình 4.22. Đồ thị vận tốc góc ứng với các vận tốc góc quay ban đầu khác nhau. Ở trường hợp này, với giá trị đầu vào bất kỳ thì sau một quãng thời gian quả đạn nhanh chóng ổn định về vận tốc góc =124 (rad/s)=20 (vòng/s) (đúng với tham số thiết kế của TLPKTT kiểu I). Điều này do khi vận tốc góc tăng lên thì góc nghiêng dòng
  23. 21 vào các bản cánh phá ổn định và cánh ổn định giảm đi một lượng tương ứng là nên mô men lực dọc trục gây bởi các bản cánh này giảm dẫn đến làm quả đạn quay chậm lại trở về vận tốc góc ổn định ban đầu. Trường hợp tương tự xảy ra khi vận tốc góc giảm. Như vậy là với vận tốc bay hành trình V = 570m/s và các góc lật cánh như thiết kế ban đầu thì nếu có một yếu tố ngoại vi nào đó tác động gây biến đổi tốc độ quay của quả đạn thì ngay lập tức xuất hiện một số gia mô men có vai trò chống lại sự thay đổi đó, giúp quả đạn luôn luôn ổn định ở vận tốc quay theo yêu cầu kỹ thuật. Mô men lực đó được gọi là « mô men giảm chấn ». 4.5. Kết luận chƣơng 4 Những kết quả đã đạt được của chương 4 cụ thể là : - Chứng minh được sự thay đổi số bước ren của TKĐ ảnh hưởng trực tiếp tới hệ số lực cản chính diện của quả đạn. Tuy nhiên khi tăng số bước ren lên thì hệ số Cx gần như không thay đổi, nhưng ở chiều ngược lại thì gây nên sự biến đổi rõ rệt. - Ảnh hưởng của cánh ổn định tới vận tốc góc quay dọc trục tên lửa lớn hơn nhiều so với cánh phá ổn định. Có thể nói là cánh phá ổn định có vai trò chính trong việc tạo quay và ổn định vận tốc góc quay. Cánh phá ổn định có vai trò chủ yếu là giảm độ dự trữ ổn định tĩnh của quả đạn nhằm mục đích tăng tính cơ động của tên lửa nhờ hiệu quả dịch chuyển vị trí tâm áp về phía đầu mũi của quả đạn, và song song với đó là góp phần tạo mô men «giảm chấn» do hiện tượng nghiêng dòng khi đi qua cánh phá ổn định, giúp ổn định vận tốc góc quay của quả đạn. - Đối với TLPKTT kiểu điều khiển 1 kênh. Mỗi một chi tiết thiết kế nào đó, thường dẫn đến những ảnh hưởng phụ do hiện tượng đan kênh. Do đó, có những chi tiết tạo nên hiệu quả về mặt này nhưng lại đem đến những tác động không mong muốn lên mặt khác. Nên các
  24. 22 tổng công trình sư phải có tư duy thiết kế hệ thống để sắp đặt các chi tiết trong một tổng thể hài hòa và hiệu quả. Như vậy, những kết quả nghiên cứu trong chương 4 ta thấy được sự ảnh hưởng rất lớn của các tham số hình dạng đến các hệ số khí động, từ đó dẫn đến sự ảnh hưởng đến chất lượng khí động của quả đạn. Từ các khảo sát này, đã đưa ra những nhận định về hình dạng tối ưu cho từng đối tượng. Qua khảo sát một số trường hợp điển hình, thấy rằng kết quả nghiên cứu phù hợp với lô gíc và bản chất vật lý của quá trình thiết kế hệ thống. Điều đó cho thấy những kết quả nghiên cứu đạt được trong các chương I, II, III và mô hình toán xây dựng là đúng đắn, có tính ứng dụng. Có thể sử dụng cho nghiên cứu, khảo sát thử nghiệm các tham số thiết kế, chế tạo cũng như các nghiên cứu chuyên sâu và công tác giảng dạy về đối tượng TLPKTT. KẾT LUẬN Những kết quả chính đạt đƣợc 1. Xây dựng mô hình toán cho đối tượng TLPK kiểu một kênh, tính toán xác định bộ hệ số khí động cụ thể cho tên lửa PKTT kiểu I: - Xây dựng được mô hình toán dùng cho đối tượng TLPKTT điều khiển một kênh có tính quay. Chuyển đổi các khái niệm góc tấn, góc trượt cạnh thông thường về bài toán tọa độ cực ( ). - Xây dựng được công thức tổng quát xác định các hệ số cho đối tượng TLPKTT nói chung và tính riêng cho TLPKTT kiểu I. Đây là một kết quả nghiên cứu mới, ứng dụng cho việc khảo sát các đặc trưng khí động của tên lửa một kênh, có hiện tượng “đan kênh”. - Đã xây dựng được phương án mô phỏng sử dụng phần mềm ANSYS.CFX để xác định các đặc trưng khí động ở các điều kiện xác định về đặc trưng của dòng chảy bao (vận tốc dòng, nhiệt độ, các góc tạo thành với trục dọc TBB). Ứng dụng các kết quả mô phỏng cho đối tượng TLPKTT kiểu I để xác định hệ số của phương trình tính
  25. 23 cho tên lửa này. 2. Luận án đã tiến hành thiết lập công cụ tính toán mô phỏng ANSYS CFX để tính các lực và mô men khí động của mô hình quả đạn tên lửa một kênh kiểu I. Các kết quả sau khi trích xuất từ phần mềm CFX đã được xử lý sơ bộ và tính toán ra các tham số khí động thành phần nhờ phương pháp nhận dạng hồi quy liên tiếp. Các tham số khí động sau tính toán, nhận dạng được đưa vào mô hình toán học chuyển động của tên lửa để tiến hành mô phỏng động lực học vòng điều khiển tên lửa. Các kết quả mô phỏng trên Matlab Simulink cho thấy các tham số khí động tính toán về cơ bản đã thể hiện được các đặc trưng khí động học của tên lửa. Đồng thời, dựa vào các hệ số khí động đã tính toán, nội dung chương cũng đã tiến hành kiểm tra lại quy trình tính toán, xử lý dữ liệu thực nghiệm. Qua đó đã chỉ ra được tính khả thi và các vấn đề gặp phải khi tính toán và phương pháp giải quyết. 3. Các đánh giá ảnh hưởng của tham số hình dạng có kết quả như sau: a. Chỉ ra ảnh hưởng của bước ren tới hệ số lực cản chính diện của quả đạn: - Số bước ren có ảnh hưởng đến hệ số lực cản chính diện Cx, bằng việc biến sóng xung kích thành các sóng xung kích xiên ; - Tăng số bước ren sẽ ít tác động đến Cx hơn so với trường hợp giảm số bước ren; - Trong thiết kế có thể tối ưu TKĐ với số bước ren là 16, 17, hoặc 18 (tối ưu trên tiêu chí giảm lực cản chính diện) b. Đánh giá ảnh hưởng của các tham số hình dạng đến mô men xoắn: Cánh phá ổn định có vai trò chủ yếu là giảm độ dự trữ ổn định
  26. 24 tĩnh của quả đạn để tăng tính cơ động của tên lửa bằng việc dịch chuyển vị trí tâm áp về phía đầu mũi của quả đạn, và song song với đó là góp phần tạo mô men « giảm chấn » do hiện tượng nghiêng dòng khi đi qua cánh phá ổn định, giúp ổn định vận tốc góc quay của quả đạn. Đối với TLPKTT kiểu điều khiển 1 kênh. Mỗi của một chi tiết thiết kế nào đó thường dẫn có những ảnh hưởng phụ khác do hiện tượng đan kênh. Do đó, có những chi tiết tạo nên hiệu quả về mặt này nhưng lại đem đến những tác động không mong muốn lên mặt khác. Nên các tổng công trình sư phải có tư duy thiết kế hệ thống để sắp đặt các chi tiết trong một tổng thể hài hòa và hiệu quả. Những đóng góp mới của luận án 1. Xây dựng mô hình tính cho phép tính toán xác định hệ số khí động của tên lửa phòng không tầm thấp điều khiển một kênh có tính đan xen của các kênh; 2. Xác định được hệ số lực cản chính diện Cx, hệ số mô men xoắn mx đối với một đối tượng cụ thể tên lửa phòng không tầm thấp; 3. Đánh giá ảnh hưởng các tham số hình dạng tới hệ số khí động của tên lửa phòng không tầm thấp. Hƣớng nghiên cứu tiếp theo 1. Nghiên cứu, phân tích bài toán khử nhiễu của thiết bị đo đạc quỹ đạo thực nghiệm bắn TLPKTT kiểu I; 2. Nghiên cứu phân tích nâng cao chất lượng chia lưới và cài đặt đặc tính dòng chảy bao sát với điều kiện thực tế thử nghiệm; 3. Nghiên cứu tối ưu thiết kế cánh lái, cánh phá ổn định và cánh ổn định của tên lửa.
  27. DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ CỦA TÁC GIẢ 1. Trần Phú Hoành, Nguyễn Thành Trung, Nguyễn Anh Tuấn, Nghiên cứu vai trò của thanh khí động trong thiết kế của tên lửa phòng không tầm thấp Igla trên cơ sở phần mềm mô phỏng khí động học Ansys. Tạp chí Hội nghị cơ học thủy khí lần thứ XX, 7-2017, tr. 328-334; 2. Nguyễn Thành Trung, Nguyễn Hải Nam, Dương Văn Thạch, Trần Phú Hoành, Tính toán ảnh hưởng của cánh phá ổn định đến các đặc trưng khí động của tên lửa Igla. Tạp chí Hội nghị cơ học toàn quốc lần thứ X; 12-2017, tr. 339-342; 3. Nguyễn Văn Chúc, Nguyễn Văn Sơn, Trần Phú Hoành, Phương pháp xác định hệ số lệnh tên lửa điều khiển một kênh; Tạp chí nghiên cứu Khoa học và Công nghệ Quân sự, số 45, 10-2016, tr. 03-05; 4. Nguyễn Văn Chúc, Phan Văn Chương, Trần Mạnh Tuân, Lê Quang Thương, Trần Phú Hoành, Lê Đức Hạnh, Nghiên cứu phối trí khí động phục vụ tính toán cải tiến, thiết kế mới tên lửa điều khiển một kênh tầm gần, Tạp chí nghiên cứu Khoa học và Công nghệ Quân sự, số 61, 6-2019, Hà nội, tr. 11-18.